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1. INTRODUCTION

Vibration problems of rectangular plates with mass loading are very common in engineering
applications [1, 2]. While there are several reports on plate vibrations with added point
masses [3}6], very few reports on plate vibrations with distributed mass loading can be
found in the literature. It has been proved that distributed mass loading can induce
signi"cant changes of modal frequencies and shapes in beam vibrations [7, 8]. In this paper,
the free bending vibration of a simply supported rectangular plate carrying distributed mass
loading is analyzed by the Rayleigh}Ritz method. The e!ects of size and location of the
mass loading on the changes of modal frequencies and shapes as demonstrated by the
analysis of the numerical solution of the eigenvalue problem are investigated.

2. EIGENVALUE PROBLEM IN RAYLEIGH}RITZ METHOD

By neglecting the e!ects of shear deformation and rotatory inertia e!ects, the dynamic
equation for free vibration of a uniform isotropic rectangular plate is given by [9]

���
Eh�w(x,y, t)

12(1!��) �#

��(�hw(x, y, t)

�t�
"0, (1)

where h is the thickness of the plate, �, E and � are the density, Young's modulus and the
Poisson's ratio of the plate material respectively.

Consider the plate to be loaded with a uniformly distributed mass on area x
�
�y

�
as

shown in Figure 1 and assume that the mass does not prevent any bending of the plate
segment on which it is. The dynamic equation of the loaded plate may be written as
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Eh�w(x, y, t)
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��(�hw(x,y, t))
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��(MA�w(x, y, t))
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" 0, (2)

where M is the distributed mass loading per area and A� is the area of the plate with the
added distributed mass loading.
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Figure 1. Rectangular plates with distributed mass loadings of di!erent size and location. The total mass
loadings in all three cases are the same: x*region with uniformly distributed mass loading. (a) Loading case 1:
¸
�
"1, ¸

�
"1)5, x

�
"0)5, y

�
"0)75, d

�
"0)5, d

�
"0)75,M/�h"0)4. (b) Loading case 2: ¸

�
"1, ¸

�
"1)5, x

�
"0)5,

y
�
"0)75, d

�
"0)1, d

�
"0)15, M/�h"10. (c) Loading case 3: ¸

�
"1, ¸

�
"1)5, x

�
"0)3, y

�
"0)45, d

�
"0)1,

d
�
"0)15, M/�h"10.
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If the vibration is assumed to be a simple harmonic motion, the solution of equation (2)
may be written as

w (x, y, t)"=(x, y)sin �t. (3)

Maximum strain energy of the plate is

;
���
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�x�y�

�

� dA. (4)

Maximum kinetic energy of the plate is

¹
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��

=� dA�, (5)

where D"Eh�/[12(1!��)] is the #exural rigidity of the plate.
To apply the Ritz [9, 10] method in solving equation (2), the following series is used to

represent the de#ection=(x, y):

=(x, y)"�
�

�
�

A
��

�
�
(x)�

�
(y), (6)

where �
�
(x) and �

�
(y) are appropriate functions which individually satis"es at least the

geometric boundary conditions in the x and y directions respectively.
Substitution of the de#ection function=(x, y) in equation (6) into the kinetic and strain

energy expression and minimization of the Rayleigh quotient with respect to the coe$cients
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A
�	

leads to the eigenvalue equation [10]:
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/2, y

�
!d

�
/2), (x

�
!d

�
/2, y

�
#d

�
/2), (x

�
#d

�
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�
/2,
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�
!d

�
/2) are the co-ordinates of the four corners of the loaded area A� as shown in

Figure 1(a).
According to the Ritz method, the assumed displacement function = approaches the

exact solution as N approaches in"nity if the system of chosen functions �
�
(x) and �

�
(y)

satis"es the following conditions [11, 12]: (1) �
�
(x) and �

�
(y) are linearly independent; (2)

�
�
(x) and �

�
(y) each form a complete system of functions, and (3) �

�
(x) and �

�
(y) satisfy the

geometric boundary conditions of the plate in the x and y directions respectively. A similar
method for solving plate vibration excited by a uniformly distributed force acting over
a rectangular portion of the plate can be found in reference [13].

3. NUMERICAL RESULTS AND DISCUSSION

The transverse vibration of an isotropic rectangular plate with simple supports along all
its edges is studied using the proposed method. �

�
(x) and �

�
(y) are taken as sin(i
x/¸

�
) and

sin(j
y/¸
�
) respectively. A computer program is written for equation (6) and solved by the

Matlab software. The proposed modelling method is veri"ed by comparing the results of
a test case reported in references [3, 5] with the result obtained with the Matlab program.
The 50 kg point mass loading in the test case is represented by a mass loading distributed in
a very small region so that it can be solved by the present method. The parameters used in
the simulation are M"1)25�10 kg/m�, E"2)051�10�� N/m�, ¸

�
"¸

�
"2 m,

x
�
"y

�
"0)5, �"7850 kg/m�, h"0)005 m, �"0)3, d

�
"d

�
"0)002 and N"5. The "rst

"ve natural frequencies (in rad/s) are shown in Table 1. Numerical results for the test case
TABLE 1

¹he ,rst ,ve natural frequencies for a uniform square simply supported plate carrying
a concentrated mass of 50 kg located at x

�
/¸

�
"0)25 and y

�
/¸

�
"0)25

�
�

�
�

�
�

�
�

�
�

The present method 31)8536 63.5505 95)4149 128)0735 180)8910
Cha [3] 31)8140 63)2319 95)4148 127)6160 180)5930
Reference [1] 31)8248 63)3182 95)4150 127)7414 180)6767



TABLE 2

Change of the non-dimensional eigenfrequencies, ��"(��h/D¸�
�
)�, of a simply supported rectangular plate of aspect ratio ¸

�
/¸

�
"1)5 loaded

with distributed masses: e+ect of size and location of the mass loading

Non-dimensional
eigenfrequencies

Unloaded
plate

Loading case 1
(refer to
Figure 1)

% decrease
of natural
frequency

Loading case 2
(refer to

Figure 1)

% decrease
of natural
frequency

Loading case 3
(refer to

Figure 1)

% decrease
of natural
frequency

(��h/D¸�
�
)�

��
14)2561 12)65588 11)2 12)0753 15)3 13)0495 8

(��h/D¸�
�
)�

��
27)4156 25)38666 7)4 26)8918 1)9 24)7544 10

(��h/D¸�
�
)�

��
43)8649 40)61045 7)4 41)9978 4)3 39)9536 9

(��h/D¸�
�
)�

��
49)348 46)57419 5)6 45)3518 8)1 48)5313 2

(��h/D¸�
�
)�

��
57)0244 54)28112 4)8 56)8956 0)2 53)1536 7

(��h/D¸�
�
)�

��
78)9568 74)64819 5)5 73)7955 6)5 77)6171 2

(��h/D¸�
�
)�

��
80)0535 76)07834 5)0 78)4533 2)0 77)3189 3

(��h/D¸�
�
)�

��
93)2129 87)95304 5)6 86)4268 7)3 91)6198 2

(��h/D¸�
�
)�

��
106)3724 102)5845 3)6 105)2100 1)1 102)5937 4

(��h/D¸�
�
)�

��
109)6623 104)7244 4)5 108)9475 0)7 106)1183 3
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reported in references [3, 5] are also listed in the table for comparison. The comparison of
the results indicates that the proposed method is appropriate for the vibration analysis of
plates carrying mass loading.

The e!ect of size and location of distributed mass loading on the transverse vibration of
a simply supported rectangular plate is investigated by studying three di!erent cases of
mass loading as shown in Figure 1. The additional mass loading in all three cases is 10% of
the mass of the unloaded plate. The loaded mass in both cases 1 and 2 is distributed around
the center of the plate while that in case 3 is closer to one of the corners of the plate. The
loaded areas in cases 1, 2 and 3 are 25, 1 and 1% of the total plate surface area respectively.
The natural frequencies of the three loaded plates are calculated by settingN"20 and they
are compared with those of the unloaded plate. The changes of natural frequency in these
three loading cases are shown in Table 2. As depicted by equation (4), the maximum kinetic
energy of the vibrating plate is a!ected most if the mass loading is added on an antinode of
the plate in which case a large change of natural frequency of the corresponding vibration
mode will be e!ected. This prediction is substantiated by observing the change of frequency
in loading case 2 as shown in Table 2. Vibration modes with mass loading on an antinode
such as �

��
, �

��
and �

��
have relatively larger changes of natural frequency than the modes

with mass loading about a node such as �
��

and �
��

. Since the mass loading in case 2 is
more concentrated than that in case 1, the e!ects of the loading on the maximum kinetic
energy of the plate for some vibration modes are more dramatic in case 2 than that in case 1.
Therefore, the variation of frequency changes in case 1 is generally not as great as that in
case 2. In loading case 3, the added mass is moved closer to a corner of the plate. The change
of natural frequencies is more signi"cant for modes with the mass added on an antinode
such as �

��
, �

��
and �

��
.

The mode shapes of the simply supported rectangular plate with mass loading case
2 (¸

�
"1, ¸

�
"1)5, x

�
"0)5, y

�
"0)75, d

�
"0)1, d

�
"0)15, M/�h"10) have also been
Figure 2. Normalized mode shape, �
��

of a rectangular plate carrying a distributed mass with its center (loading
case 2).
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calculated by substituting the coe$cients A
��

into equation (5) after solving equation (6)
using the Matlab program. The mode shape �

��
is shown in Figure 2. It is observed that the

expected antinode at the center becomes unobservable and all vibration antinodes around
the added mass appear to be shifted towards the loaded region. This phenomenon has also
been observed in beam vibration with distributed mass loading [7]. Contour maps of four
other mode shapes are shown in Figure 3. The shifting of vibration antinodes towards the
loaded region appears in modes �

��
, �

��
and �

��
. Furthermore, in respect of modes

�
��

and �
��

, the amplitude of the antinodes at the loaded region, i.e., the center, is smaller
than those of the other antinodes. No signi"cant change of mode shape for mode �

��
is

observed because the center of the mass loading region is a node of the vibration mode. This
minimal e!ect of mass loading on mode �

��
is con"rmed by the small frequency change

(0)7%) when compared with the change of frequencies of the same vibration mode in the
cases of loadings 1 and 2 as shown in Table 2.

4. CONCLUSION

The solution to the eigenvalue problem of the bending vibration of plates with distributed
mass loading is formulated using the Rayleigh}Ritz method. The natural frequencies and
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Figure 3. Contours of vibration modes of a simply supported rectangular plate carrying a distributed mass with
its center at (loading case 2): (a) �
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; (b) �
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; (c) �
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; (d) �
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.
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mode shapes of a simply supported rectangular plate are calculated by numerically solving
the eigenvalue problem. The e!ects of the size and location of a distributed mass loading on
the plate are investigated. It is found that both the natural frequency and mode shape of
a certain vibration mode will have relatively larger changes if the mass loading is placed on
an antinode of the vibration mode. In the three particular cases being studied, it is observed
that the added mass would reduce the amplitude of an antinode close to it and all vibration
antinodes around the added mass appear to be shifted towards the loaded region.
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